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Abstract. We study the properties of the backbone of, and conduction in, random clusters 
which have homogeneous interior structure. These include the largest percolation cluster 
at pc, lattice animals and the Witten-Sander (ws) aggregates. For lattice animals the fractal 
dimension da of the backbone is estimated, for the first time, and is found to be about 1 . I4  at 
d = 2 and about 1.39 at d = 3. These values are much lower than the corresponding values for 
the animals themselves. The fractal and spectral dimensions of the backbone of the ws 
aggregates are estimated to be about 1.25 and I .06 at d = 2, respectively. A recent hypothesis 
which relates the fractal dimension of random walks on these clusters to those of the 
clusters and their backbones is also discussed. It is shown that for the ws aggregates 
d,=  d s = 2  on a Bethe lattice (i.e. at d = C O ) ,  in contrast with d,  = 4/3 and ds= I for 
percolation clusters and lattice animals. The conductivity exponent t ,  of lattice animals 
is found to be t , (d = 2)  = 0.73 and t , (d = 3)  = 1.19 and t , (d z 8) = 2, whereas for the ws 
aggregates we find r w s (  d = 2)  = 0.67 and r w s (  d = 3) = 0.94 and tws(  d + CO) = 1. 

1. Introduction 

Diffusion on fractal structures has been the subject of considerable recent interest. De 
Gennes (1976) introduced this problem in an attempt to probe the structure of 
percolation clusters (for a review, see Mitescu and Roussenq 1983). In this problem, 
one considers the motion of a particle (‘the ant’) which performs an unbiased, nearest- 
neighbour (P6lya) random walk on a percolation network (‘the labyrinth’). For such 
a walk, the root-mean-squared displacement R of the random walk is related to the 
number of steps N,  of the walk through the relation R - NL’d-, where d ,  is the fractal 
dimension of the walk. If R is much larger than tP, the percolation correlation length, 
the fractal dimension d ,  takes on its superuniversal value of 2 at all dimensions. But 
if R<< tP, then d ,  depends on the dimensionality of the system. In the latter case the 
random walk takes p!ace on either the largest percolation cluster at the percolation 
threshold p c  (in which case tp = 03) or slightly above p c  and at short times. The largest 
percolation cluster at p c  is recognised to be a fractal object and is characterised by a 
fractal dimension d,. This fractal dimension is related to other percolation exponents 
at dimension d through (Kirkpatrick 1978, Stauffer 1979) d ,  = d -- p /  Y, where p is the 
critical exponent of the percolation probability and Y the critical exponent of the 
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percolation correlation length. No exact values for d ,  and d ,  are known for 2 S d < 6 ,  
although with the possibly exact values of P ( d  = 2 )  = 5/36 and v ( d  = 2) = 4/3 (see the 
review by Sahimi 1983) one obtains the possibly exact value d, (d  = 2 )  = 91/48; for 
d 5 6 one has d ,  = 4. 

It was established by Gefen et a1 (1983) that the value of d ,  depends on whether 
one averages R over all percolation clusters or considers R for only a single cluster. 
In the former case d ,  =2(2v+ t - P ) / ( 2 v - P ) ,  whereas for the latter case and for the 
largest percolation cluster at pc ,  d ,  = 2 + ( t  - P ) /  v, where t is the critical exponent of 
percolation conductivity. Thus for d z= 6 one has d ,  = CO for the former case, whereas 
d ,  = 6 for the latter one. 

Alexander and Orbach (1982) defined a new fractal dimension d,  which they called 
the spectral (fracton) dimension. It is given by 

d ,  = 2d,/ d ,  

and it can be thought of as a fractal dimension in reciprocal space. This definition is 
general and is applied to any fractal object with a random walk fractal dimension d,. 
Based on numerical evidence, Alexander and Orbach conjectured that for the largest 
percolation cluster at p c  the spectral dimension d, is a superuniversal quantity and 
equals 4/3 at all dimensions. The most recent and accurate estimate of t at d = 2 by 
Zabolitzky (1984), Lobb and Frank (1984), Herrmann et a1 (1984) and Hong et a1 
(1984) yields d, (d  = 2) = 1.321, which indicates rather strongly that the Alexander- 
Orbach (AO) conjecture may fail at d = 2 .  Sahimi (1984a) and Aharony and Stauffer 
(1984) have argued that even if the AO conjecture is exact, it is only for fractal 
dimensionalities d, 5 2 of the largest percolation cluster at pc .  

Several generalisations of the problem of ‘the ant in the labyrinth’ have recently 
been proposed and studied. In one of them, one studies the mixing of two miscible 
fluids in an unsaturated porous medium as the random walk of a tracer particle on 
the infinite percolation cluster. This problem differs in several important aspects from 
the original ant problem. There is an external field in one principal direction of the 
percolation network (the overall pressure gradient in the porous medium), and thus 
the ant (the tracer particle) favours more steps in the longitudinal direction (parallel 
to the overall pressure gradient or the external field). The local transition probabilities 
are proportional to the local fluxes in the bonds of the network and steps against the 
direction of local potential drop along a bond are forbidden. Monte Carlo simulations 
show that the overall motion of the ant is characterised by two diffusion coefficients, 
one for the longitudinal direction and another for the transverse directions (perpen- 
dicular to the longitudinal direction). This is because the external field induces local 
anisotropy in local fluxes. Usually, the longitudinal diffusion coefficient is at least one 
order of magnitude larger than the transverse one far from pc .  Moreover, it appears 
that as p c  is approached, the longitudinal diffusion coefficient diuerges, whereas the 
transverse diffusion coefficient vanishes. Because the transition probabilities are propor- 
tional to the local fluxes within bonds of the network, the ant performs its walk only 
on the backbone of the cluster, since the dead-end part of the cluster does not carry 
any flow. The ant can diffuse into the dead-end part of the cluster with a molecular 
diffusion coefficient which is usually much smaller than its diffusion coefficients for 
the backbone of the cluster. This problem, dispersion in flow through a porous medium, 
has many applications in the fields of chemical and petroleum engineering. Monte 
Carlo simulation results and scaling laws for the diffusion coefficients of the ant in 
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this problem have been given elsewhere (Sahimi er al 1982, 1983, 1984a, b, Sahimi 
1984~).  

Wilke er a1 (1984), Sahimi and Jerauld (1984) and Havlin et a1 (1984) recently 
studied random walks on lattice animals in two, three and four dimensions. Meakin 
and Stanley (1983) studied random walks on the diffusion-limited aggregates first 
studied by Witten and Sander (1981). These aggregates are fractal objects which are 
distinctly different from percolation clusters and lattice animals (Gould er a1 1983). 
Meakin and Stanley (1983) found that the spectral dimension of the Witten-Sander 
(WS) aggregates lies between 1.2 and 1.4. One can also study self avoiding walks (SAW) 

on percolation clusters (Kremer 1981, Sahimi 1984b, Rammal et a1 1984). This problem 
is interesting because the statistics of such SAWS might be related to those of the 
backbone of the clusters. 

The largest percolation cluster at pc, lattice animals and the ws aggregates are all 
examples of fractals with homogeneous interior structure. Moreover, the fractal 
dimensionality of these clusters is a monotonic function of dimensionality d (up to 
their upper critical dimensionality). Since diffusion and DC conduction are related to 
each other through the well known Einstein relation, and since conduction takes place 
only on the backbone, it is worthwhile investigating directly DC conduction and 
backbone properties on such fractals. The purpose of this paper is to provide the 
results of such a study. We calculate, for the first time, the spectral and fractal 
dimensions of the backbone of lattice animals and the ws aggregates from which one 
can obtain useful insight into the structure of these fractals. A scaling relation which 
relates the conductivity exponent of these fractals to their spectral and fractal 
dimensions is used to find the conductivity exponents of these fractals. This helps one 
to distinguish between these random clusters. This work complements our previous 
work on random walks on the backbone of percolation clusters mentioned above. 

2. Percolation clusters 

If resistors are placed between the nearest-neighbour sites of a random cluster of linear 
dimension L, then the conductance g ( L )  of the cluster scales with L as 

g ( L )  - L P L l  (2) 

which is similar to quantum conduction. Rammal and Toulouse (1983) proposed that 
for a fractal of spectral dimension d,  < 2 and fractal dimension d f ,  P L  is given by 

(3) 

for d L 6 one has P L  = - 2 .  By using the definition of d,  and the equations which relate 
d ,  and d ,  to exponents r, v and P we obtain, P L  = d - 2 - t /  U. Therefore, the exponent 
P L  is the same for percolation clusters and their backbone since v is the same for both 
of these clusters. Thus one may write BL = d,( 1 - 2/&) = P L ,  where (5, is the fractal 
dimension of the backbone and a, = 2dp/d, is the spectral dimension of the backbone. 
The equality of pL and PL was postulated by Puech and Rammal (1983) and was also 
discussed by Stanley and Coniglio (1984). Here dp = d - PB/ v, where PB is the critical 
exponent of backbone fraction (Kirkpatrick 1978). d, is the fractal dimension of 
random walk on the backbone. It is straightforward to show that dw=2+( t -P , ) /v  
for the backbone of the largest percolation cluster at pc .  From the equality of P r  and 

P L  = dd 1 - 2/ 4 )  ; 
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Pt one can calculate ds, as was done by Stanley and Coniglio (1984). One then finds 
that ds varies continuously from a value of about 1.25 at d = 2 to ds = 1 for d k 6, in 
contrast with d,  for the largest percolation cluster at pc which remains approximately 
constant. 

Wilke et a1 (1984) attempted to establish a connection between the fractal dimension 
of random walks on a cluster and those of the cluster and its backbone. By making 
several assumptions they proposed that 

d, = d,+ dp (4) 

This relation was postulated to hold for percolation clusters as well as lattice animals. 
But the available data show that it does not hold for the percolation clusters. For 
percolation clusters loops play an important role and their removal changes the 
universality class. On the other hand, for fractals, such as lattice animals, loops are 
not important (Lubensky and Isaacson 1979) and their removal does not generate a 
new universality class. In this case equation (4) may be expected to hold. This has 
interesting consequences that will be discussed in the following sections. 

If we assume that the usual scaling relations between the cluster exponents (Stauffer 
1979) also hold for the critical exponents of the backbone, as the work of Harris (1983) 
indicates that this is indeed the case, then, following Gefen et a1 (1983), it can be 
shown that if one averages the root-mean-squared RB of the random walk on the 
backbone over the distribution of the backbone of all clusters, one obtains 

d, = 2( 2 + t - PB)/(2 v - PB). ( 5 )  

Thus in this case d, remains finite for d 5 6, whereas d ,  = ~3 for percolation clusters 
for the same situation. This non-divergence of 2, for the percolation clusters for d k 6 
may mean that this averaging amounts to a series process in which any ant will 
eventually find itself in an isolated and finite backbone. 

We note here that the exponent bL (and pL) for the backbone is the same as the 
exponent - [/ v of Stanley and Coniglio (1984). [ is defined by 5 = t - ( d  -2) v and 
describes the resistance between two sites on the cluster which are separated by a 
distance comparable to 6,. However, their conjecture that & =  5, fails in low 
dimensions, since from the equality of p L  and BL, the relation p L  = - ( / U  and their 
conjecture one can obtain 

JP = U P : / @ +  m. (6) 

By using the current values of v, p and t we can calculate P L  and thus dp by invoking 
(6). We obtain dp(d = 2 )  = 1.80 and d p ( d  = 3) = 1.63, which means that equation (6) 
predicts that dp is a non-monotonic function of dimensionality d and attains a minimum 
at about d = 3. Field-theoretic formulation of the backbone problem by Harris (1983) 
yields dp = 2 t ~ / 2  1 + . . . where E = 6 - d. This does indicate that Jp is a non-monotonic 
function of d, but it predicts that dp has a maximum at a dimensionality d,* such that 
4 < d * < 5 ,  whereas the conjecture of Stanley and Coniglio predicts that d has a 
minimum at about d *  = 3. This non-monotonic dependence of dp on d may explain 
the failure of the AO conjecture for the backbone of percolation clusters. 

3. Lattice animals 

We now investigate the backbone and conduction properties of lattice animals ; the 
ws aggregates will be studied in the next section. To define the backbone of these 
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fractals, we consider two sites i and j which are separated by a distance comparable 
to the radius of the fractals. Then the backbone sites (or bonds) are the ones that 
belong to at least two distinct self-avoiding walks between sites i and j .  The rest are 
the dead-end or dangling ones. If RB is the radius of the backbone, the fractal dimension 
of the backbone of the cluster is defined by 

RB- NAld', (7) 

where NB is the number of elements in the backbone and equation (7) is valid for the 
limit of NB + CO. 

We first obtain estimates of d, for the backbone of lattice animals in two and three 
dimensions. To do this, we employ a position space renormalisation group (PSRG) 

method. We consider site animals, i.e. connected clusters of sites originating from a 
single site. To construct a renormalisation group (RG) transformation of the backbone 
we first assign a fugacity SB to each site in the backbone. We then determine the 
generating function 

where C, is the total number of backbones with i sites which span the RG cell in a 
particular direction on a cell of linear dimension b. The RG transformation is defined 
by requiring that the generating function for the spanning backbones is invariant on 
the original and rescaled levels. This leads us to an equation for the renormalised 
fugacity Sb on the rescaled cell: 

The fractal dimension of the backbone is given by & = I n  A B / h  b, where A B =  

(aSg/dS,),; is the eigenvalue of the linearised RG transformation. Sg is the fixed point 
of the transformation, i.e. the solution of the equation Sg = G(Sg, b) .  This PSRG 

method is similar to the one developed by Family (1983) for the calculation of the 
fractal dimension of animals themselves. 

The recursion relation for Sk was determined for cells of size b = 2-4 on a square 
lattice. In three dimensions it is not possible to calculate, in closed form, the recursion 
relation for Sk for b > 2. The results for the square lattice are d, = 1.409, 1.3 17 and 
1.273 for b = 2, 3 and 4, respectively. By a similar procedure one finds d, = 1.409, 1.43 1 
and 1.447 for the fractal dimension of the animal itself for cells of size b = 2, 3 and 4, 
respectively. These values extrapolate to d, = 1.55 and d, = 1.14. The estimate for d, 
is only about 1% smaller than the most accurate estimate of d, in two dimensions, 
d,=  1.56 (Derrida and DeSeze 1982). 

In three dimensions the b = 2 cell yields d, = 1.722. Let us define f( b )  = da/da( b ) ,  
where d, is the correct value of this exponent and d , ( b )  is its value obtained from 
PSRG calculations with a cell of size b. In two dimensions we obtainf(2) = 1.1.4/ 1.409 = 
0.809. If we assume that f( b )  is not very sensitive to the dimensionality of the system 
we obtain d,(d = 3) = 0.809 X 1.722 = 1.39. If we use the same procedure for the 
animals we obtain d,(d = 3) = 1.895, only 5% smaller than the exact value d,( d = 3) = 2 
(Parisi and Sourlas 1981). Thus although this simple procedure is not expected to be 
too reliable, its estimates are in reasonable agreement with the available data. Hence 
for lattice animals we estimate 

&(d = 2) = 1.12, a,( d = 3) = 1.37. (9) 

We are not aware of any data to compare with our estimates. 
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We have discovered an error in the calculation of Sahimi and Jerauld (1984) for 
d, of lattice animals. The LHS of their equation (7) must be multiplied by a factor i. 
With this correction their PSRG method yields d,(d = 2) -- 2.5. This is in reasonable 
agreement with the estimate of Wilke et a1 ( 1984) and Havlin er al (1984). If we use the 
Monte Carlo estimate of Wilke er a1 (1984), d,(d = 2) = 2.6h0.3, equation (4) would be 
satisfied. More recently Havlin er a1 (1984) estimated that d, = 2.78 * 0.08. With this 
estimate equation (4) is almost satisfied. One should also expect that at any given 
dimension, d, for lattice animals will be smaller than d, for the largest percolation 
cluster at p c .  

In three dimensions our estimate of d, together with the exact result d ,=2 yield 
d,(d =3)-3.37, if we invoke equation (4). This is exactly the estimate of Havlin er 
a1 (1984) who obtained d,(d =3)=3.37*0.1. It is also consistent with the result of 
Wilke et a1 (1984) who estimated that d,(d = 3) = 3.4k0.4. Therefore, it appears that 
equation (4) may also be satisfied at d = 3 for lattice animals (as discussed above). It 
would be interesting to see whether the fractal dimension of backbone lattice animals is a 
monotonic function of dimensionality. If we assume that for lattice animals pL = pL and 
use the estimates for d,, d, and d,, we obtain &( d = 2) = 1. This is an interesting result in 
that &cannot be less than unity and this result is just on the borderline. Thus, more work is 
necessary to settle this interesting issue. 

Aharony and Stauffer (1984) have recently proposed that for a fractal with df< 2 
one has d ,  = df+ 1. This together with equation (4) means that d, = 1 for d a s  2. That 
is, the fractal dimensionality of the backbone of lattice animals is a constant for 
all 1 S d S 3. This is an intriguing result which calls for more precise estimates of d, 
and d,. Note also that this relation means that d2 = 2df/( 1 + df). 

We now consider DC conduction on lattice animals. To define the problem we 
assign a conductance go to every bond that joins two nearest-neighbour sites in the 
animal. We then expect that as the number N of elements in the animal becomes very 
large, the conductivity U of the animal scale with N as 

U - N-'.. (10) 

Here t,  is an exponent which we expect to be universal. We also expect U to be an 
intrinsic property of the animal, so that it should not matter how u is measured. For 
example, it can be measured between two bars of constant potential. We first note 
that an equation which relates t ,  to other exponents of the animal can be obtained. 
This is done by noting that the relation r = (d -2) v +  5 for percolation clusters can be 
generalised to any fractal. For example, for lattice animals one has 

t , = ( d  -2)/da+2/d,-  1. (11 )  
This equation is also valid for the ws aggregates with the proper use of the fractal and 
spectral dimension of the aggregates. Equation ( 1  1) can be used to find the mean-field 
value of t ,  for lattice animals, i.e. its value for d 3 8. Because ds(d  3 8) = 4/3 (Sahimi 
and Jerauld 1984) and d,( d 3 8) = 4, one obtains 

t,( d a 8 )  = 2 .  (12) 

In two dimensions equation ( 1 1) yields t, = 0.73 if we use d, = 1.15 which is the estimate 
of Havlin er a1 (1984). Likewise, we find f a =  1.19 for three-dimensional animals. If 
one assumes that the AO conjecture is exact for d , 2 2 ,  one obtains the exact results 
r,(d = 3) = 1 and r,( d = 4) = 4/3. On the other hand the Aharony-Stauffer argument 
means that t,(d = 2) = 0.64, which appears to be too low and thus it may indicate that 
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this conjecture does not hold for animals. Thus the Aharony-Stauffer relation may 
just be a lower bound for t ,  (an upper bound for d, ) .  We note that equation (12) can 
be used to measure the spectral dimension d ,  of animals if t ,  can be measured accurately, 
since very accurate or exact values of d ,  are already known and direct measurement 
of d,  is very difficult (Wilke et al 1984). One very accurate method is to combine the 
transfer-matrix method for lattice animals (Derrida and DeSeze 1982) and for conduc- 
tion (Derrida and Vannimenus 1982). 

4. The Witten-Sander aggregates 

We now turn our attention to the ws aggregates. In the ws model the initial state at 
time 0 = 1 is a seed particle located at the centre of a large lattice. A second particle 
is released at a distance far from the seed particle at time 0 = 2. The particle then 
performs a random walk until it reaches a site adjacent to the seed site, where it stops 
its random walk and joins the cluster. The process of releasing the particles is continued 
until a large cluster of occupied sites is formed. The radius of the cluster R scales 
with N,  the total number of particles in the cluster, as 

R - N'jd*, ,  (13) 

where d,, is the fractal dimension of the aggregate. Meakin (1983) found that for the 
ws aggregates d,, = 5 d / 6  for d = 2-6. Moreover, Witten and Sander (1983) argued 
that these aggregates do not have upper critical dimension so that d,,+ CO as d + 00. 

Here we estimate the fractal dimension zWs of the backbone of the ws aggregates 
by a PSRG method. This PSRG method is similar to the one developed by Gould et a1 
(1983) and yields good results for d,, at d = 2  with small cells. Certain difficulties 
arise when one employs this PSRG method to study ws aggregates in three and higher 
dimensional systems or when one uses very large RG cells, as has been discussed 
elsewhere (Sahimi and Jerauld 1983, Nakanishi and Family 1984). But for the present 
purpose the PSRG method of Gould et a1 is a useful tool. 

The PSRG treatment of the backbone of the ws aggregates is a two-parameter model. 
A fugacity SB is assigned to each occupied site of the backbone (which is defined in 
a way similar to the backbone sites of lattice animals), and another fugacity W is 
assigned to each step of the random walk of the added particle. Thus the recursion 
relation for Sg, the renormalised backbone site occupation fugacity, is written as 

sy, = 1 c,,s; W", 
5, m 

where C,, is the number of different ways of growing a spanning backbone of s sites 
generated by random walks with a total number of steps m. Another recursion relation 
is found for W', the fugacity of a single-step random walk on the renormalised lattice. 
This relation is of the form 

W ' = C  bnW", 
n 

where b, is the total number of walks of n steps that start from a fixed origin and 
span the cell in a given direction. Since the random walk is diffusive, i.e. the length 
of the walk 1 obeys 1 - N z 2 ,  where Nw is the number of steps of the walk, one may 
enumerate only those walks whose number of steps Nw obeys NwS 1 2 ,  where 1 is 
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taken to be the end-to-end length of the walk on the cell because, at the critical fugacity 
W*, only these walks are important (Could et a1 1983). For example, for a b = 2 cell, 
all walks of up to five steps are enumerated, since 1 = 5 ” 2 .  The fractal dimension d,, 
of the backbone of the aggregate is calculated by the usual way, i.e. d,, = in h,,/ln b, 
where h,,=aSL/aSB evaluated at the fixed points SB= SE and W =  W*. We used 
standard RG cells, see e.g. Gould et af (1983). 

The fractal dimension d,, of the backbone of the ws aggregates were calculated 
for cell sizes b = 2, 3, and 4 on a square lattice; the results are 8,- 1.707, 1.52, and 
1.48 respectively. These values extrapolate to a value d,, = 1.25 if one plots the values 
of d,,(b) against l / ln  b. A similar PSRG calculation for the fractal dimension of the 
aggregates themselves yields dws- 1.67 (Could et a1 1983), in complete agreement with 
the computer simulation results of Meakin (1983). These values for d,, and d,, do 
not satisfy equation (4) since one then obtains, d,( d = 2) = 2.92, in contrast with the 
estimate (Meakin and Stanley 1983), d,(d = 2) -- 2.56k0.10. On the other hand, the 
Aharony-Stauffer argument that d, = 1 + d,, is consistent with the result of Meakin 
and Stanley (1983) for d,, which also implies that d,, = 1. However, this estimate for 
d ,  is not accurate. More recent calculations (McKarnin, Nordahl, Sahimi and Tirrell, 
to be published) show that while d,( d = 2) = 1.2, one has d,( d = 2) = 2.76. Thus the 
Aharony-Stauffer relation does not hold for the ws aggregates. The importance of 
equation (4) is that it relates the dynamical exponent d, to the static exponents in a 
simple manner. By using dw,( d = 2) = 1.25, dws( d = 2) - 1.67 and (Meakin and Stanley 
1983) d,(d = 2) = 1.20 and the equality of p L  and DL, we obtain d,(d = 2) = 1.06 for 
the ws aggregates. 

Since for the ws aggregates d,, + CO as d + CO, equation ( 1 1 )  predicts that tws( d + 

a) = 2/d,( d + CO). The fact that d,,(d + a) + CO means that on a Bethe lattice, i.e. an 
infinite-dimensional structure, all sites of the lattice will be occupied by the incoming 
particles. Since on this lattice for any cluster of linear dimension L we expect the 
number of sites, which is proportional to the resistance of the cluster, to be proportional 
to L2, we deduce that p L  = -2 for the ws aggregates in the limit d +CO( d,, + CO). This 
result was also obtained by Family and Coniglio (1984). By invoking equation (3) we 
then obtain d,(d + CO) = 2 for the ws aggregates, in contrast with percolation clusters 
and lattice animals for which d, = 4/3 for this high-dimensionality limit. This indicates 
that the spectral dimension of the ws aggregates varies between a value of about 
(Meakin and Stanley 1983) d,(d = 2) = 1.20 and d,( d + C O )  = 2. This may mean that 
for kinetic clusters such as the ws aggregates one has, for the highdimensionality 
limit, d, = 2 ,  whereas d, = 4/3 for ‘equilibrium’ clusters such as percolation clusters 
and lattice animals. Since all of the sites of a Bethe lattice will be occupied by the 
incoming particles, one cannot distinguish between the aggregate and its backbone; 
consequently d,( d + C O )  = 2 for the ws aggregates. Therefore, if we invoke ( 1  I ) ,  we 
obtain 

t , , (d+a)= 1 .  (14) 
These results demonstrate clearly the difference between the ws aggregates and 

‘equilibrium’ clusters. By using the numerical estimates of Meakin (1983) and Meakin 
and Stanley (1983) we obtain t,,(d =2)-0.67 and t,,(d =3)-0.94. One may also 
estimate t,, by an accurate method such as that of Turban and Debierre 1984) from 
which d, for the ws aggregates can be calculated. But our results so far imply that the 
AO conjecture may not be exact at any dimension for the ws aggregates. On the other 
hand, it may also mean that the AO conjecture may hold for the ws aggregates for a 
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range of d such that d,  s d S d,, where d,  = 2.4 is the dimensionality at which d,, = 2. 
For d > d ,  one may expect that d ,  increases from its values of d ,  = 413 to reach its 
high-dimensionality limit of 2. One may then identify d ,  as a sort of upper critical 
dimensionality for the ws aggregates. An estimate of d ,  would then be of interest. 

5. Summary and conclusions 

We have studied the properties of the backbone of, and conduction in, random clusters 
which have homogeneous interior structure. These include percolation clusters, lattice 
animals and the ws aggregates. For lattice animals the fractal dimension of the 
backbone was calculated, for the first time, with the help of which the hypothesis of 
Wilke et a1 (equation (4)) was tested for lattice animals; the results indicate that it 
may hold in low dimensions. The mean-field value of the critical exponent of conduc- 
tivity for lattice animals was found to be 2, in contrast with that of the Witten-Sander 
aggregates which was shown to be 1. The spectral and fractal dimensions of the 
backbone of lattice animals and the ws aggregates were estimated at two dimensions 
and were found to be different from (and slightly lower than) the corresponding values 
for lattice animals and the ws aggregates themselves. It was shown that for the ws 
aggregates d,( d + CO) = &( d + m) = 2, in contrast with d ,  = 4/3 and d, = 1 for percolation 
clusters and lattice animals. 
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